

Shirpur Education Society's

# R. C. Patel Institute of Technology, Shirpur

(An Autonomous Institute)

**Course Structure and Syllabus Booklet** 

## Honours Degree Program in Robotics (Mechanical Engineering)

with effect from Year 2024-25



Shahada Road, Near Nimzari Naka, Shirpur, Maharashtra 425405 Ph: 02563 259 8 Web: www.rcpit.ac.in

## **Department of Mechanical Engineering** (Autonomous - RCP23 NEP)

| Honors Program in Robotics (w.e.f. 2024-25) |          |              |                                               |                           |   |                                |     |                         |                         |                           |         |         |    |
|---------------------------------------------|----------|--------------|-----------------------------------------------|---------------------------|---|--------------------------------|-----|-------------------------|-------------------------|---------------------------|---------|---------|----|
| Sr                                          | Course   | Course Code  | Course Title                                  | Teaching<br>Scheme (hrs.) |   | Evaluation Scheme (CA) (marks) |     |                         |                         | ESE                       | Total   | Credit  |    |
|                                             | category | ас.<br>1     |                                               | L                         | Т | Р                              | ТА  | Term<br>Test 1<br>(TT1) | Term<br>Test 2<br>(TT2) | Average<br>(TT1 &<br>TT2) | (marks) |         |    |
|                                             |          |              |                                               |                           |   |                                | [A] |                         |                         | [B]                       | [C]     | [A+B+C] |    |
| Sem-III                                     |          |              |                                               |                           |   |                                |     |                         |                         |                           |         |         |    |
| 1                                           | Н        | RCP23MCH2301 | Introduction to Robotics and Its Applications | 4                         | - |                                | 25  | 15                      | 15                      | 15                        | 60      | 100     | 4  |
| Sem-IV 4                                    |          |              |                                               |                           |   |                                |     |                         |                         |                           |         |         |    |
| 2                                           | Н        | RCP23MLH2401 | Basic Robotics Laboratory                     | -                         | - | 4                              | 25  | -                       | -                       | _                         | 25      | 50      | 2  |
| Sem-V                                       |          |              |                                               |                           |   |                                |     |                         |                         |                           |         |         |    |
| 3                                           | Н        | RCP23MCH2501 | Modelling and Design of Robotics              | 3                         | - | -                              | 25  | 15                      | 15                      | 15                        | 60      | 100     |    |
| 4                                           | Н        | RCP23MLH2501 | Robotics laboratory 2                         | -                         | - | 2                              | 25  | -                       | -                       | -                         | -       | 25      |    |
| Sem-VI                                      |          |              |                                               |                           |   |                                |     |                         |                         |                           |         |         |    |
| 5                                           | Н        | RCP23MCH2601 | Advance Robotics                              | 3                         | - | -                              | 25  | 15                      | 15                      | 15                        | 60      | 100     |    |
| 6                                           | Н        | RCP23MLH2601 | Robotics laboratory 3                         | -                         | - | 2                              | 25  | -                       | -                       | -                         | -       | 25      |    |
| Sem-VII 23 1                                |          |              |                                               |                           |   |                                |     |                         |                         |                           |         |         |    |
| 7                                           | H        | RCP23MCH2701 | AI and ML for Robotics                        | 4                         | - | -                              | 25  | 15                      | 15                      | 15                        | 60      | 100     | 4  |
|                                             |          |              | Total                                         | 14                        | - | 8                              | 175 | 60                      | 60                      | 60                        | 265     | 500     | 10 |
| H – Honors                                  |          |              |                                               |                           |   |                                |     |                         |                         |                           |         |         |    |
|                                             |          |              | 30                                            |                           |   |                                |     |                         |                         | V                         |         |         |    |

Prepared by Prof. R. R. Ozarkar

Р

Dean Academic/Dy. Director Prof. Dr. P. J. Deore

Checked by Prof. S. V. Yeole

C.O.E. Prof. S. P. Shukla



SEA

Director Prof. Dr. J. B. Patil

# Introduction to Robotics and Its Applications (RCP23MCH2301)

#### **Teaching Scheme**

Lectures : 04 Hrs./week Credits : 04

#### **Examination Scheme**

Term Test : 20 Marks Teacher Assessment : 20 Marks End Sem Exam : 60 Marks Total Marks : 100 Marks

#### **Prerequisite:**

- 1. Knowledge of basic elements of mechanical engineering
- 2. Knowledge of electrical engineering like motors & drives
- 3. Knowledge of instrumentation related topics like sensors & applications
- 4. Basic knowledge of control systems engineering

#### **Course Objectives:**

- 1. To impart knowledge of the fundamental concepts of robotics in the modern-day world from the olden days.
- 2. Make the student know the anatomical structure of the fixed & mobile robots with actuating systems.
- 3. To develop the student's knowledge in various types of sensors & its applications.
- 4. Making the robotic system to know how to do robotic manipulation using different types of endeffectors, viz., the tools & grippers.
- 5. To introduce the basic principles, techniques, state of art techniques in robot programming with control strategies.
- 6. Make the learner know about the different types of applications of robots in the modern-day world.

#### **Course Objectives:**

| со  | Course Outcomes                                                                                                                 | Blooms<br>Level | Blooms<br>Description |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|
| CO1 | Remember the basic structure of robots with their mathematical interpretations in the 3- dimensional analysis.                  | L1              | Remember              |
| CO2 | Understand the kinematic analysis while doing the PNPO.                                                                         | L2              | Understand            |
| CO3 | Apply the knowledge of mathematics in developing all possible solutions to the inverse kinematic analysis while doing the PNPO. | L3              | Apply                 |
| CO4 | Analyze the area in which the robot can do the effective PNPO with a well-defined optimized shortest path trajectory.           | L4              | Analyze               |
| CO5 | Evaluate the performance of difference learning schemes<br>used for solving a typical robotic application using AI<br>concepts. | L5              | Evaluate              |
| CO6 | Create a typical robotic application to solve any type of automated works without human intervention.                           | L6              | Create                |



## **Course Contents**

#### Unit-I

#### Introduction to Robotics :

To automation & its types, History & evolution of robotics, Definition of robots, Robotic manipulators, Types of robots, Generations of robots, Laws of robotics, Classification of robots & its applications in engineering sector, Difference human hand & robot hands, Robot joints and links, Serial chain & closed chain manipulators, Need for robots in the modern-day world, Specifications of robots

#### Unit-II

#### **Robot Anatomy :**

Anatomy of robots, Drive systems, Actuators and Power Transmission systems, Types of drives & its applications, Hydraulic drives, Pneumatic drives, Electric drives, Hybrid drives, Basic control system design for actuations, Robot activation & feedback components, Types of actuators, Applications of drives in robotics, Types of control for robot movements, Types of motion & its interpretations.

#### Unit-III

#### Sensors in Robotics :

Touch Sensors, Tactile Sensors, Proximity & Range Sensors, Sensor Based Systems, Force Sensors, Light sensors, Pressure sensors, Ultrasonic sensors, Infra-red sensors, Pots, Encoders, Position & Velocity Sensors, Vision systems and Equipments, Introduction to Machine vision & Computer vision for robotic systems, Interoceptive sensors & Exteroceptive sensors, Sensor integration, calibrations & its performance, Applications of each sensor, A case study for sensory feedback design for a particular application.

#### **Unit-IV**

#### **Articulated Mechanical System :**

Materials used for robot design & its properties, Transmission devices in robots & its types, End effectors, Types of end effectors, Tools & Grippers, Classification of tools & grippers, Types of tool & gripper actuations, Gripper selection for particular application, Gripper design, Robot wrist mechanisms, Spherical wrists & non spherical wrists, Purpose & need for grippers, A case study for gripper design for a particular application.

#### **Unit-V**

#### **Robot Controllers & Programming :**

Robot brain, Controller & its types, Need for controller in robots, Robot simulation, Robot software, Robot Programming & the Languages, Types of robot programming, Industrial robot programming, Job scenario in industrial robot programming, Motion commands in some languages, On-line & Off- line programming of robots, A case study of a typical robot programming for a particular application (Say, Python or Matlab or

Simulink or any other language) **RCPIT | MECH | Honors Robotics** 

#### 3

08 Hrs.



#### 08 Hrs.

08 Hrs.

#### 08 Hrs.

#### Unit-VI

#### **Robot Applications:**

Industrial applications of robots, Medical, Household, Entertainment, Space, Underwater, Defense, Rehabilitation, Disaster management, Microbots and Nanorobots, Social, Environmental & economic issues in robot applications, Advantages & Disadvantages of Robotization, Use of IoT application in Robotics & Automation, Future Applications & Trends in Robotics.

#### **Text Books Recommended:**

- 1. Dr. T.C.Manjunath, "Fundamentals of Robotics", Nandu Publishers, 5<sup>th</sup> Edn., India, 2005.
- 2. Elaine Rich & Kevin Knight, "Artificial Intelligence", Mac Graw Hill, Singapore, 3rd Edn., 2017.
- 3. Dr. T.C.Manjunath, "Fast Track to Robotics", Nandu Publishers, 2nd Edn., Mumbai, Maharashtra, India, 2005.
- 4. K.S. Fu, R.C. Gonzalez, C.S.G. Lee, "Robotics: Control Sensing Vision & Intelligence", MacGraw Hill, USA, 5th Edition, 2010.
- 5. Robin R. Murphy, "Introduction to AI and Robotics", MIT Press, Second Edition, 648 pp., Oct. 2019.

#### **Reference Books:**

- 1. Industrial Robotics, Technology, Programming & Applications, Grover, Weiss, Nagel, Ordey, Mc Graw Hill.
- 2. Robotic technology & Flexible Automation, S R Deb. TMH.
- 3. Robotics for Engineers, Yoram Koren, Mc Graw hill.
- 4. Fundamentals of Robotics, Larry Health.
- 5. Robot Analysis & Control, H Asada, JJE Slotine.
- 6. Robot Technology, Ed. A Pugh, Peter Peregrinus Ltd. IEE, UK. 8. Handbook of Industrial Robotics, Ed. Shimon. John Wiley
- 7. Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza, "Introduction to Autonomous Mobile Robots", Bradford Company Scituate, US
- 8. Fundamentals of Robotics Analysis & Controls, Robert Schilling, Prentice Hall Inc, India.
- 9. Robotics Amitaabh Bhattacharya
- 10. P.A. Janaki Raman, "Robotics and Image Processing an Introduction", Tata McGraw Hill Publishing company Ltd., 1995.



#### **Evaluation Scheme:**

#### Theory :

#### **Continuous Assessment (A):**

Subject teacher will declare Teacher Assessment criteria at the start of semester.

#### **Continuous Assessment (B):**

- 1. Two term tests of 20 marks each will be conducted during the semester.
- 2. Average of the marks scored in both the tests will be considered for final grading.

#### End Semester Examination (C):

- 1. Question paper based on the entire syllabus, summing up to 60 marks.
- 2. Total duration allotted for writing the paper is 2 hrs.



## Basic Robotics Laboratory (RCP23MLH2401)

#### **Teaching Scheme**

Practical : 04 Hrs./week Credits : 02

#### **Examination Scheme**

Teacher Assessment : 25 Marks End Sem Exam : 25 Marks Total Marks : 50 Marks

#### **Prerequisite:**

- 1. Knowledge of Python Programming Basics
- 2. Knowledge of Matlab Programming & Simulink in Matlab
- 3. Knowledge of C/C++, Java, LabVIEW

#### **Course Objectives:**



- 1. To know the basic programming skills to develop simulations for workspace of a robot arm.
- 2. To know the basic programming skills to develop simulations for pick & place applications.
- 3. To know the basic programming skills to develop simulations to develop the graphical representation of the robot arm.
- 4. To know the basic programming skills to develop simulations for simulating the different types of robot work envelopes.
- 5. To equip students with the skills to graphically simulate and analyze various types of robotic arms (Planar Articulated, Cylindrical, Rectangular, Polar, and SCARA) in both 2D and 3D views, providing a strong foundation in understanding robotic kinematics and workspaces.
- 6. To enable students to implement and simulate practical robotic operations such as pick-and-place tasks and screw transformations

| со  | Course Outcomes                                                                                                                                                                                 | Bloo<br>ms<br>Level | Blooms<br>Description |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|
| CO1 | Simulate and analyze the kinematic behavior of various robotic<br>arm configurations (Planar Articulated, Cylindrical,<br>Rectangular, Polar, SCARA) in both 2D and 3D views.                   | L3                  | Apply                 |
| CO2 | Graphically and numerically determine the workspace of different robotic arms, enhancing their understanding of reach and motion capabilities.                                                  | L3                  | Apply                 |
| CO3 | Develop proficiency in simulating robotic control systems using<br>Simulink, enabling them to observe and evaluate the dynamic<br>response of robots to control inputs.                         | L4                  | Analyze               |
| CO4 | Acquire practical skills in programming and executing pick-and-<br>place operations with Planar Articulated and SCARA robotic<br>arms, demonstrating their application in real-world scenarios. | L3                  | Apply                 |
| CO5 | Implement screw transformations, threading, and unthreading operations, deepening their comprehension of complex robotic motions and transformations                                            | L3                  | Apply                 |
| CO6 | Gain hands-on experience with graphical simulation software,<br>reinforcing theoretical concepts through practical applications<br>and enhancing their problem-solving skills in robotics.      | L3                  | Apply                 |

- 1. Orientation to the laboratory course Programming skills & concepts
- 2. Program 1 Graphical simulation of a 3-axis planar articulated robot arm (PARA) (2D & 3D View)
- 3. Program 2 Graphical simulation of 3-axis cylindrical coordinate robot arm & its work space of cylindrical robot (2D & 3D View)
- 4. Program 3 Graphical representation of a 3-axis Rectangular Coordinate Robot arm (2D & 3D View)
- 5. Program 4 Graphical representation of a 3-axis Polar Coordinate Robot arm (2D & 3D View)
- 6. Program 5 Graphical representation of a 4-axis SCARA Robot arm (2D & 3D View)
- 7. Program 6 Pick & place operation using a 3-axis planar articulated robot arm
- 8. Program 7 Pick & place operation using a 4-axis SCARA Robot arm
- Program 8 Determination of horizontal & Vertical reach of cylindrical coordinate robot with graphical & numerical simulations.
- Program 9 Program to develop Screw Transformations (ST), threading of a screw & unthreading of a screw
- 11. Program 10 Simulation of a control system of a robot to see its response using Simulink
- 12. Program 11 Program to study the work space of a 3-axis Planar Articulated robot arm
- 13. Program 12 Program to study the work space of a 3-axis Rectangular Articulated robot arm
- 14. Program 13 Program to study the work space of a 3-axis Cylindrical Coordinate Articulated robot arm
- 15. Program 14 Program to study the work space of a 3-axis Polar-Spherical Coordinate Articulated robot arm
- 16. Program 15 Program to study the work space of a 3-axis SCARA robot arm
- 17. Revision & Repetition of the missed experiments if any
- 18. Internal test



10 experiments from the above-suggested list or any other experiments based on syllabus can be included to be performed in 10 weeks with the first week orientation, the last week internal test & the repetitions, which would take 13 weeks & which would help the learner to apply the concept learnt.

Assignments based on syllabus, Mini project or case study/literature-based seminar/presentation relevant to the subject may be included, which would help the learner to apply the concept learnt.

## **Open ended experiment:**

Students should make a robot model bringing components from outside with motors, wheels, Arduino board, battery (power supply), wheels, ultrasonic sensors (obstacle detection & avoidance), connecting wires, links, screws, gripper, etc... to make the student know the practical aspects of how a robot looks like (similar to doing any type of mini-project).

#### **Text Books Recommended:**

- 1. Robin R. Murphy, "Introduction to AI and Robotics", MIT Press, Second Edition, 648 pp., Oct. 2019.
- 2. Dr. T.C. Manjunath, "Fundamentals of Robotics", Nandu Publishers, 5th Edn., India, 2005 (Programming with CD/DVD)
- 3. Kenneth Lambert "Fundamentals of Python\_ Data Structures", Cengage Learning PTR (2013).
- 4. Gowrishankar S, Veena A, "Introduction to Python Programming", 1st Edition, CRC Press/Taylor & Francis, 2018. ISBN-13: 978-0815394372.
- 5. http://do1.drchuck.com/pythonlearn/EN\_us/pythonlearn.pdf
- 6. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd Edition, Green Tea Press, 2015. (<u>http://greenteapress.com/thinkpython2/thinkpython2.pdf</u>)
- 7. Kernigan & Ritche, Fundamentals of C/C++.
- 8. Bal Guruswamy, Fundamentals of C Programming.
- 9. Stephen J. Chapman, MATLAB Programming for Engineers MATLAB Programming for Engineers

#### On-Line Materials & Resources (NPTEL courses / Video lectures / You-tube Videos / Power points / On-line notes / web-links:

- 1. <u>https://nptel.ac.in/courses/106/106/106106182/</u>
- 2. https://nptel.ac.in/courses/115/104/115104095/
- 3. <u>https://www.edx.org/learn/python</u>
- 4. <u>https://www.coursera.org/courses?query=python</u>
- 5. https://www.udemy.com/topic/python/
- 6. <u>https://online-learning.harvard.edu/subject/python</u>
- 7. https://www.codecademy.com/learn/learn-python
- 8. <u>https://www.geeksforgeeks.org/python-programming-language/</u>
- 9. https://www.lynda.com/Python-training-tutorials/415-0.html
- 10. <u>https://www.python.org/</u>
- 11. https://www.mathworks.com/



#### **Evaluation Scheme:**

#### **Continuous Assessment (A):**

- **Term work** shall consist of:
  - Minimum 10 experiments
  - Assignments / Case study/ Literature-based seminar/presentation / Mini-project.
- The distribution of marks shall be as follows:
  - Performance in Experiments: 05 Marks
  - Journal Submission: 05 Marks
  - Viva-voce: 05 Marks
  - Subject Specific Lab Assignment/Case Study/MiniProject: 10 Marks
- The final certification and acceptance of the laboratory journal/manual/report will be subject to satisfactory performance in laboratory work and upon fulfilling minimum passing criteria in the teacher assessment.

#### End Semester Examination (C):

Oral/Practical examination will be based on the entire syllabus, including the practicals performed during laboratory sessions.

